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Overview

Timeline

• Start date: October 2016  

• End date: September 2019

• Percent complete: 90%

Budget

• Total project funding

- FY2018 $500K

- FY2019 $500K

Partners

• Interactions/collaborations: 
LBNL, UCB, ANL, Cambridge, 
ORNL, PNNL, NCEM, ALS, SSRL

• Project lead: Vincent Battaglia

Barriers Addressed

• Energy density

• Cycle life 

• Safety



• Obtain fundamental understanding on performance-limiting 
properties, phase transition mechanisms, kinetic barriers, and 
instabilities in high-energy cathode materials

• Develop strategies to improve solid-state charge transport and 
optimize charge transfer at electrode-electrolyte interface

• Discover and develop next-generation electrode materials based 
on rational design as opposed to the conventional empirical 
approaches

Relevance/Objectives



Milestones

Date Milestones Status

December 
2018

Understand the interplay between cationic and 
anionic redox processes in model transition-
metal (TM) oxides.

Completed

March 2019
Characterize interfacial processes and surface 
changes on anion-active model oxides. 

Completed

June 2019
Evaluate the effect of particle size/morphology 
on oxygen redox chemistry and kinetics. 

On 
schedule

September 
2019

Develop design strategies to improve 
performance of anion-active oxide cathodes.

On 
schedule
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with well-controlled physical 
properties
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construction

Approach/Strategy
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knowledge

Advanced 

diagnostics

Fundamental understanding of solid-state 
chemistry, kinetic barriers and instabilities during 
battery operation  
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I. Fundamental understanding of anionic redox in Li-rich TM (LRTM) oxides and 
its impact on cathode performance

a)   Collective redox activities of TM cations and oxygen anions responsible for 
high capacity in LRTM oxide cathodes

b) O redox increases capacity but reduces cycling stability and rate capability

b)   Surface engineering approaches to stabilize anion-active LRTM oxides 

• Synthesis of LRTM oxides stabilized by surface segregated TM 

• Post-synthesis surface coating

a)   Bulk strategies to increase stability of O redox

• Effect of redox-inactive TM

• Effect of anion substitution

II. What influences stability of LRTM oxide cathodes with O redox?

This presentation only focuses on I) and II a)

Technical Accomplishments: Overview



LRTM oxide single crystals synthesized

• Phase-pure crystal samples of Li1+x(M’Mn)1-xO2 (0.2 ≤ x ≤ 0.4, M’ = Nb, Ta, Ti, W, Zr, or 
combinations of) rock-salts synthesized by using a molten-salt method. 
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Local short-range ordering observed in Cation-
disordered rock-salt structure 

Neutron PDF analysis

(NOMAD at SNS/ORNL)
G. Chen et. al, Chem 4 (9), 2108 (2018) 

Evidence for local short-

range ordering at particle-

level (TEM/EDX, NCEM) 

LNMO



Combined TM and O redox leads to high capacity 
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• Mn redox contributes 120 mAh/g with 0.4 Li+ extraction at lower voltages.

• O redox contributes 140 mAh/g at higher voltages.
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Cycling stability correlated to extent of O redox

• Cycling capacity increases while stability (capacity and average discharge voltage) 
decreases with increasing involvement of O redox at high voltages.  
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Influence of redox-inactive TM

• Redox-inactive TMs also have a critical role in 
electrochemical performance of LRTM oxides.
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A. Urban et. al, Phys. Rev. Lett. 119, 176402 (2017)

• Redox-inactive TMs are d0 TMs (Ti4+, Mo6+, 
V5+, Nb5+, Zr4+ etc.) essential in formation 
of disordered rock-salt crystal structure. 



• Samples with the same redox-active Mn content but varying redox-inactive TMs were selected for 
further evaluation: Li1.3Nb0.3Mn0.4O2 (LNMO), Li1.25Nb0.15Ti0.2Mn0.4O2 (LNTMO) and Li1.2Ti0.4Mn0.4O2

(LTMO).

• Redox-inactive Ti provides stabilizing effect in electrochemical performance of oxide cathodes.

Redox-inactive TM influences cycling stability
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Redox-inactive TM influences O loss

Operando Differential Electrochemical Mass Spectroscopy 
(DEMS, with B. McCloskey, UC Berkeley)

• Oxygen gas release detected upon first charge to  4.3 V.  

• Oxygen loss in LTMO is  10x less compared to that in LNMO. 
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Redox-inactive TM influences chemical stability
Mn K-edge hard XAS spectra/mapping (SSRL beamline 2-2)
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Responses to Previous Year Reviewers’ Comments 

No reviewer comments received from 2018 DOE Merit Review 



Collaborations 

• Prof. Gerd Ceder and Kristin Persson (UC 
Berkeley) – modeling

• Drs. Marca Doeff (LBNL), Dennis Nordlund 
and Yijin Liu (SSRL), and APS – synchrotron 
in situ and ex situ XRD, XAS and FF-TXM-
XANES studies 

• Dr. Wanli Yang (ALS) – synchrotron XAS
and RIXS studies

• Prof Bryan McCloskey (UC Berkeley) –
DEMS 

• Drs. Jagjit Nanda, Ashfia Huq (ORNL) and 
Jack Chen (Chinese Academy of Sciences, 
CAS and ANSTO) – neutron diffraction and 
PDF studies

• Dr. Chongmin Wang (PNNL) – STEM/EELS 



Remaining Challenges and Barriers 

• Comprehensive understanding on the selection rules of redox-
active and redox-inactive TMs in LRTM oxides necessary in order 
to optimize composition for cathode performance and stability. 

• Surface chemistry of LRTM oxides – rock-salt nature of the 
samples makes it difficult to effectively monitor the formation of 
surface layer due to O loss and TM migration as well as its 
evolution with cycling.  

• Further fundamental understanding of performance limiting 
mechanisms/processes in newer LRTM oxide cathodes needed in 
order to evaluate how O redox can be utilized to develop 
commercially viable high-energy cathodes  



Proposed Future Work

• Obtain further understanding on the interplay between cation and anion 
redox processes in LRTM oxides and how redox-inactive TM modulate O 
redox and overall stability. 

• Explore techniques to investigate surface chemistry of LRTM oxides, 
particularly the formation of surface layer due to O loss and TM 
migration, how the layer thickness evolves with cycling and what impact 
it has on cathode performance. 

• Develop strategies to design and protect LRTM oxide surface against side 
reactions (particularly oxygen loss), chemical and structural instabilities. 

• Obtain comprehensive understanding on performance limiting 
mechanisms/processes in LRTM oxide cathodes and develop mitigating 
approaches to address the identified issues. 

• Provide material design insights on how to balance capacity and stability 
of LRTM oxide cathodes.

“Any proposed future work is subject to changes based on funding levels.”



Summary

• Developed approaches to synthesize high-quality LRTM oxide model 
samples for diagnostic studies.  

• Experimentally demonstrated the correlation in the extent of oxygen 
redox, charge storage capacity, cycling stability and rate capability of 
LRTM oxide cathodes. 

• Elucidated the role of redox-inactive TM in modulating O redox 
activities, chemical stability and electrochemical performance of 
LRTM oxide cathodes.   

• Investigated strategies to stabilize O redox and mitigate the capacity 
and stability trade-offs when utilizing oxygen redox process in LRTM 
oxide cathodes.



Technical Back-Up Slides



• Oxygen redox has poor kinetics and repeated cycling involving oxygen reduces TM redox 
kinetics as well.

• Significant capacity recovery at slower rate – kinetic barrier major source of degradation.

Rate capability correlated to extent of O redox
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• LNMO, LNTMO and LTMO crystal samples are phase-pure rock-salts with similar size 
and morphology. 

Pristine sample characterization 
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Redox-inactive TM influences surface chemical 
stability

Mn L-edge TEY soft XAS 
(SSRL beamline 8-2)
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Mn in both LNMO 
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• Surface reduction 
less severe in LTMO 
than that in LNMO.



Effect of redox-inactive TM on surface and bulk 
chemical stability
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Mn K-edge hard XAS 
(SSRL beamline 2-2)

Mn L-edge TEY soft XAS 
(SSRL beamline 8-2) • Bulk and surface 

Mn oxidation 
states estimated 
from K-edge and 
L-edge X-ray 
absorption 
energies, 
respectively.  

• With cycling, 
surface Mn more 
reduced than 
bulk. 

• Ti shows 
stabilizing effect 
in both bulk and 
surface reduction. 


